

An architectural membrane with extraordinary flexural strength, and a fluorine mixture surface that insures long-term dirt resistance

Ultra Flexural Strength

UltraMax was created using a base fabric woven with spun yarn. When the fuzzy surface of spun yarn is impregnated with a PVC Paste-Gel, a three-dimensional bonding of the PVC resin occurs, resulting in an architectural fabric that exhibits extraordinary flexural strength.

Main Features

- Remarkable weatherability
- Lasting aesthetic appearance
- Easy to clean
- Width (1.03m & 2.03m)
- REACH compliant
- 5 & 8 year warranty

Application

- Tent warehouse
- Roof structures
- Tension structures
- Awning

Retractable Storage Facilities - Japan

in Korea

Magnified photograph of base fabric

100x Magnification

	Spun Yarn (UltraMax)	Filament Yarn (Conventional Fabric)
Base Fabric Magnified		
Base Fabric Surface	L957 2203100	L>7 220.1100
	The base fabric surface is fuzzy	The base fabric surface is flat

Cross-sectional view of base fabrics

200x Magnification

	Dipped in PVC Paste (UltraMax)	Bonding Results
Spun yarn base fabric		The resin and fuzzy filaments on the base fabric inter-twine and bond securely
	Coated with PVC (Conventional Fabric)	
Filament yarn base fabric		The resin and base fabric are only bonded on the surface
	Laminated with PVC film (Bonding result on other tarpaulin)	

Flexibility Resistance Test Results

Comparative Test Results

% All base fabric testing was conducted using the front side of the fabric

✓:Good △:Bad X:Worst

		Flexing/Bending frequency					
Temperature	Samples	10,000 Times	20,000 Times	50,000 Times	100,000 Times		
	UltraMax	✓	✓	\checkmark	✓		
20°C	Architectural Fabric "F"	\checkmark		Δ	×		
	Other Tarpaulin	\checkmark		Δ	X		
	UltraMax	✓	✓				
0°C	Architectural Fabric "F"	Δ	×				
	Other Tarpaulin	X	×				
	UltraMax	\checkmark	✓				
-5°C	Architectural Fabric "F"	X	×				
	Other Tarpaulin	X	X				

Magnified photograph of fabric after testing

	✓ : Good	\triangle : Bad	🗙 : Worst
	UltraMax 20°C 100,000 Times	Architectural Fabric"F" 20°C 50,000 Times	Architectural Fabric"F" 20°C 100,000 Times
	No scratches or cracks	Small scratches visible to the naked eye	Large cracks visible to the naked eye
Surface (150x Magnification)	9000um	500.00um	5000vm
	No scratches or cracks	Small warping visible	Considerable warping visible
Cross-section (100x Magnification)			

UltraMax Colors

Width 1.03m (24 Colors)

U-16 USUGAKI	U-31 USUKI	U-18 SHIRONERI	U-19 HAI	U-20 SUMI	U-21 GINNEZUMI
U-22 NAMARI	U-32 KACHI	U-01 KONJYO	U-02 RURI	U-03 SORA	U-26 YANAGINEZUMI
U-04 AOTAKE	U-06 TETSU	U-07 TOKUSA	U-08 SEIHEKI	U-09 MIDORO	U-10 NAE
U-11 NANOHANA	U-13 AKANE	U-12 SYOJYOHI	U-30 SHINSYO	U-27 EBICHA	U-28 KURENAI
Width 2.03m (5	Colors)				
U-18 SHIRONERI	U-19 HAI	U-22 NAMARI	U-04 AOTAKE	U-07 TOKUSA	
l litcaMay					
Width 1.03m [5 Colors]			Width 2.03m	(2 Colors)	
				,,	

U-01 KONJYO U-09 MIDORO U-18 SHIRONERI U-18 SHIRONERI U-19 HAI

U-19 HAI

U-21 GINNEZUMI

UltraMax Physical Properties

Test Items		Test Method	Unit	Measurement
Width		ASTM D 751	mm	1030 / 2030
Total Mass		ASTM D 751	g/m ²	560
Thickness		ASTM D 751	mm	0.47
Tensile Strength	Warp		N/Eem	2613
(Cut Strip)	Fill	ASIMU/51 N/3		2205
Tear Strength	Warp	JIS L 1096	N	88
(Singletongue)	Fill	Method A	N	98
Adhesion		ASTM D 751	N/5cm	50
Resistance to Water	Warp	M2V1/M 03-3003	mm	0
Absorption	Fill	M3AJ/M-03-2003		0
Resistance to Water Penetration		JIS L 1092	mm	≥1000
Temperature Resistance		MSAJ/M-03-2003	٦°	-25 / +60
Flame Retardancy		JIS L 1091		Class3
		JIS A 1322		Class2

The above data reflects average measured values.

UltraMax TypeC Physical Properties

Test Items		Test Method	Unit	Measurement
Width		ASTM D 751	mm	1030 / 2030
Total Mass		ASTM D 751	g/m ²	680
Thickness		ASTM D 751	mm	0.55
Tensile Strength	Warp	ASTM D 751	N/Eem	2613
(Cut Strip)	Fill	ASTM D 751	N/ JUII	2205
Tear Strength	Warp		N	137
(Trapezold)	Fill	ASTM D 751		147
Adhesion		ASTM D 751	N/5cm	50
Resistance to Water	Warp	MCAL/M 02 2002	mm	0
Absorption	Fill	M3AJ/M-03-2003		0
Resistance to Water Penetration		JIS L 1092	mm	≥1000
Temperature Resistance		MSAJ/M-03-2003	٦°	-25 / +60
Flame Retardancy		JIS L 1091		Class3
		JIS A 1322		Class2

The above data reflects average measured values.

FLEXOMETER - Testing equipment

Test Method: JIS K 6545-1994

Hiraoka... the Pioneer of Tent Fabrics since 1902

Hiraoka's innovative production techniques and processing technology have elevated the level of Tent Fabric standards worldwide. Our application of high quality polymer coatings to various textiles has created specialized membranes for countless applications. Years of expertise, research and experience have enabled us to meet the ongoing demands of our consumers and the global community.

When Hiraoka commenced business in 1902, we scoured and dyed cotton and hemp products. Today, our mission is to design and develop an extensive range of products that reflect our customer's changing demands and the environments in which we live. Currently, we supply a wide range of creative membrane fabrics, including specialized materials for architectural structures, to clients all over the world.

ACCREDITATION

Our ISO 9001 compliant Quality Management System ensures absolute quality, consistency and customer satisfaction. Our business systems are accredited by the United Kingdom Accreditation Service (UKAS).

CERTIFICATION

We offer clients the professional services of an in-house team of registered, practising engineers. This certification of quality ensures that all international standards are met.

SUSTAINABILITY

We proudly support many ecological initiatives. Our Research & Development Division continues to produce newer and greener products.

HIRAOKA & CO., LTD. 1-21-7 Minowa, Taito-ku, Tokyo, JAPAN 110-0011 TEL:+81-3-3876-5109 FAX:+81-3-3876-7768 http://www.tarpo-hiraoka.com/en